Gibbs/test/slave1.output

507 lines
21 KiB
Plaintext

<<<<<<<<<<<<<<< OUTPUT FROM PROCESS 0 >>>>>>>>>>>>>>>
distribution of control by ridft_mpi/rdgrad_mpi
operating system is UNIX !
hostname is akhaberhauer
ridft (akhaberhauer) : TURBOMOLE V6.6( 19134 ) 3 Jun 2014 at 14:53:30
Copyright (C) 2014 TURBOMOLE GmbH, Karlsruhe
2015-05-04 13:55:25.894
r i d f t
DFT program with RI approximation
for coulomb part
References:
TURBOMOLE:
R. Ahlrichs, M. Baer, M. Haeser, H. Horn, and
C. Koelmel
Electronic structure calculations on workstation
computers: the program system TURBOMOLE
Chem. Phys. Lett. 162: 165 (1989)
Density Functional:
O. Treutler and R. Ahlrichs
Efficient Molecular Numerical Integration Schemes
J. Chem. Phys. 102: 346 (1995)
Parallel Version:
Performance of parallel TURBOMOLE for Density
Functional Calculations
M. v. Arnim and R. Ahlrichs
J. Comp. Chem. 19: 1746 (1998)
RI-J Method:
Auxiliary Basis Sets to approximate Coulomb
Potentials
Chem. Phys. Lett. 240: 283 (1995)
K. Eichkorn, O. Treutler, H. Oehm, M. Haeser
and R. Ahlrichs
Chem. Phys. Lett. 242: 652 (1995)
Auxiliary Basis Sets for Main Row Atoms and their
Use to approximate Coulomb Potentials
K. Eichkorn, F. Weigend, O. Treutler and
R. Ahlrichs
Theo. Chem. Acc. 97: 119 (1997)
Accurate Coulomb-fitting basis sets for H to Rn
F. Weigend
Phys. Chem. Chem. Phys. 8: 1057 (2006)
Multipole accelerated RI-J (MARI-J):
Fast evaluation of the Coulomb potential for
electron densities using multipole accelerated
resolution of identity approximation
M. Sierka, A. Hogekamp and R. Ahlrichs
J. Chem. Phys. 118: 9136 (2003)
RI-JK Method:
A fully direct RI-HF algorithm: Implementation,
optimised auxiliary basis sets, demonstration of
accuracy and efficiency
F. Weigend
Phys. Chem. Chem. Phys. 4: 4285 (2002)
Two-component HF and DFT with spin-orbit coupling:
Self-consistent treatment of spin-orbit
interactions with efficient Hartree-Fock and
density functional methods
M. K. Armbruster, F. Weigend, C. van Wüllen and
W. Klopper
Relativistic all-electron 2c calculations
An efficient implementation of two-component
relativistic exact-decoupling methods for large
molecules
D. Peng, N. Middendorf, F. Weigend, M. Reiher
J. Chem. Phys. 138, 184105 (2013)
Default GA heap smaller than $ricore!
GA heap raised to: 81920000
par_setmem: 81920000 131072 F
MA: Allocated stack: 1.000000 MB/processor
SHM: Allocated heap : 625.0000 MB/processor
********** GlobalArray OPTION SETTINGS : **********
distributed memory heap/proc = 81920000
distributed memory stack/proc = 131072
*****************************************************
Distributing input file(s)
+--------------------------------------------------+
| general information about current run |
+--------------------------------------------------+
SCF run will be profiled !
DENSITY CONVERGENCE CHECK UNAVAILABLE IN GA VERSION!
Becke-3-Parameter hybrid functional: B3-LYP
exchange: 0.8*LDA + 0.72*B88 + 0.2*HF
correlation: 0.19*LDA(VWN) + 0.81*LYP
A Hybrid-DFT calculation using the RI-J approximation will be carried out.
Allocatable memory for RI due to $ricore (MB): 500
+--------------------------------------------------+
| Atomic coordinate, charge and isotop information |
+--------------------------------------------------+
atomic coordinates atom charge isotop
-5.30892633 2.67177337 -0.18681002 c 6.000 0
-1.58016444 2.70262510 -0.23112396 br 35.000 0
-5.92254749 1.74003353 -1.91713859 h 1.000 0
-6.15512884 5.06458834 -0.11520042 f 9.000 0
-6.53616421 0.95831794 2.45027300 cl 17.000 0
center of nuclear mass : -3.69569429 2.57840006 0.42092550
center of nuclear charge: -3.81754135 2.56228312 0.43368382
+--------------------------------------------------+
| basis set information |
+--------------------------------------------------+
we will work with the 1s 3p 5d 7f 9g ... basis set
...i.e. with spherical basis functions...
type atoms prim cont basis
---------------------------------------------------------------------------
c 1 27 14 6-31G* [3s2p1d|10s4p1d]
br 1 95 32 6-31G* [5s4p3d|22s16p5d]
h 1 4 2 6-31G* [2s|4s]
f 1 27 14 6-31G* [3s2p1d|10s4p1d]
cl 1 51 18 6-31G* [4s3p1d|16s10p1d]
---------------------------------------------------------------------------
total: 5 204 80
---------------------------------------------------------------------------
total number of primitive shells : 104
total number of contracted shells : 34
total number of cartesian basis functions : 86
total number of SCF-basis functions : 80
integral neglect threshold : 0.39E-09
integral storage threshold THIZE : 0.10E-04
integral storage threshold THIME : 5
RI-J AUXILIARY BASIS SET information:
we will work with the 1s 3p 5d 7f 9g ... basis set
...i.e. with spherical basis functions...
type atoms prim cont basis
---------------------------------------------------------------------------
c 1 70 49 universal [6s4p3d1f1g|12s5p4d2f1g]
br 1 89 58 universal [8s4p3d2f1g|19s5p5d3f1g]
h 1 16 11 universal [3s1p1d|5s2p1d]
f 1 70 49 universal [6s4p3d1f1g|12s5p4d2f1g]
cl 1 77 51 universal [8s4p3d1f1g|14s5p5d2f1g]
---------------------------------------------------------------------------
total: 5 322 218
---------------------------------------------------------------------------
total number of primitive shells : 116
total number of contracted shells : 70
total number of cartesian basis functions : 270
total number of SCF-basis functions : 218
symmetry group of the molecule : c1
the group has the following generators :
c1(z)
1 symmetry operations found
there are 1 real representations : a
maximum number of shells which are related by symmetry : 1
mo occupation :
irrep mo's occupied
a 80 34
number of basis functions : 80
number of occupied orbitals : 34
------------------
density functional
------------------
Becke-3-Parameter hybrid functional: B3-LYP
exchange: 0.8*LDA + 0.72*B88 + 0.2*HF
correlation: 0.19*LDA(VWN) + 0.81*LYP
iterations will be done with small grid
spherical integration : Lebedev's spherical grid
spherical gridsize : 3
i.e. gridpoints : 302
value for diffuse not defined
radial integration : Chebyshev 2nd kind (scaling 3)
radial gridsize : 3
integration cells : 5
partition function : becke
partition sharpness : 3
biggest AO integral is expected to be 21.655055823
------------------------
RI-J - INFORMATION
------------------------
Memory core needed for (P|Q) and Cholesky 1 MByte on GA
Memory core minimum needed except 1 MByte
****************************************
Memory allocated for RI-J 1 MByte
plus additional 12 MByte (integrals) (GA)
plus additional 1 MByte (pqmatrix) (GA)
****************************************
------------------------
nuclear repulsion energy : 317.776393182
------------------------
_________________________________
| |
| DFTD3 V2.1 Rev 1 |
| S.Grimme, University Muenster |
| Tue May 10 2011 |
| see standalone version |
| dftd3 -h for options |
|_________________________________|
Please cite DFT-D3 work done with this code as:
S. Grimme, J. Antony, S. Ehrlich and H. Krieg,
J. Chem. Phys, 132 (2010), 154104.
If used with BJ-damping cite also
S. Grimme, S. Ehrlich and L. Goerigk,
J. Comput. Chem. 32 (2011), 1456-1465
For DFT-D2 the reference is
S. Grimme, J. Comput. Chem., 27 (2006), 1787-1799
C6 coefficients used:
2 C6 for element 1
Z= 1 CN= 0.912 C6(AA)= 3.03
Z= 1 CN= 0.000 C6(AA)= 7.59
5 C6 for element 6
Z= 6 CN= 0.000 C6(AA)= 49.11
Z= 6 CN= 0.987 C6(AA)= 43.25
Z= 6 CN= 1.998 C6(AA)= 29.36
Z= 6 CN= 2.999 C6(AA)= 25.78
Z= 6 CN= 3.984 C6(AA)= 18.21
2 C6 for element 9
Z= 9 CN= 0.000 C6(AA)= 9.69
Z= 9 CN= 0.998 C6(AA)= 7.13
2 C6 for element 17
Z= 17 CN= 0.000 C6(AA)= 92.35
Z= 17 CN= 0.997 C6(AA)= 90.40
2 C6 for element 35
Z= 35 CN= 0.000 C6(AA)= 167.13
Z= 35 CN= 0.997 C6(AA)= 169.24
# XYZ [au] R0(AA) [Ang.] CN C6(AA) C8(AA) C10(AA) [au]
1 -5.30893 2.67177 -0.18681 c 1.455 3.971 18.4 530.9 18809.1
2 -1.58016 2.70263 -0.23112 br 1.683 1.318 169.2 10700.5 828814.5
3 -5.92255 1.74003 -1.91714 h 1.091 1.037 3.1 37.2 550.6
4 -6.15513 5.06459 -0.11520 f 1.150 1.191 7.1 122.2 2562.1
5 -6.53616 0.95832 2.45027 cl 1.552 1.275 90.4 3771.9 192787.5
molecular C6(AA) [au] = 962.54
DFT-D V3
DF b3-lyp
parameters
s6 : 1.0000
s8 : 1.7030
rs6 : 1.2610
rs18 : 1.0000
alpha6 : 14.0000
alpha8 : 16.0000
k1-k3 : 16.0000 1.3333 -4.0000
Edisp /kcal,au: -1.3877 -0.00221147
E6 /kcal : -0.0295
E8 /kcal : -1.3583
% E8 : 97.88
nuclear repulsion energy = 317.776393182
empirical dispersive energy correction = -0.002211470
nuclear repulsion + dispersion correction = 317.774181712
-----------------
-S,T+V- integrals
-----------------
1e-integrals will be neglected if expon. factor < 0.388600E-10
Difference densities algorithm switched on.
The maximal number of linear combinations of
difference densities is 20 .
automatic virtual orbital shift switched on
shift if e(lumo)-e(homo) < 0.10000000
DIIS switched on: error vector is FDS-SDF
Max. Iterations for DIIS is : 4
DIIS matrix (see manual)
Scaling factor of diagonals : 1.200
threshold for scaling factor : 0.000
scf convergence criterion : increment of total energy < .1000000D-05
and increment of one-electron energy < .1000000D-02
MOs are in ASCII format !
reading orbital data $scfmo from file mos .
orbital characterization : scfconv=6
mo-orthogonalization by Cholesky decomposition
DSCF restart information will be dumped onto file mos
Starting SCF iterations
non-zero weights= 9502
Overall gridpoints after grid construction = 9502
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
1 -3172.3308031309 -5041.1607225 1551.0557376 0.000D+00 0.388D-09
Exc = -109.056002160 Coul = 1686.64785062
exK = -26.5361108162
N = 68.000217395
current damping = 0.700
max. resid. norm for Fia-block= 1.657D-04 for orbital 28a
max. resid. fock norm = 5.812D-04 for orbital 75a
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
2 -3172.3308033545 -5041.1611273 1551.0561422 0.701D-03 0.246D-09
Exc = -109.056011717 Eck = 1660.11215393
N = 68.000217425
current damping = 0.700
Norm of current diis error: 0.39660E-03
max. resid. norm for Fia-block= 7.982D-05 for orbital 28a
max. resid. fock norm = 2.353D-04 for orbital 75a
ENERGY CONVERGED !
non-zero weights= 32260
Overall gridpoints after grid construction = 32260
ITERATION ENERGY 1e-ENERGY 2e-ENERGY NORM[dD(SAO)] TOL
3 -3172.3307144751 -5041.1609622 1551.0560661 0.176D-03 0.188D-09
Exc = -109.055923890 Eck = 1660.11198994
N = 67.999996414
current damping = 0.750
Norm of current diis error: 0.20674E-03
max. resid. norm for Fia-block= 3.738D-05 for orbital 28a
max. resid. fock norm = 9.717D-05 for orbital 75a
End of SCF iterations
convergence criteria satisfied after 3 iterations
------------------------------------------
| total energy = -3172.33071447505 |
------------------------------------------
: kinetic energy = 3167.86897423603 :
: potential energy = -6340.19968871108 :
: virial theorem = 1.99859354505 :
: wavefunction norm = 1.00000000000 :
..........................................
orbitals $scfmo will be written to file mos
irrep 30a 31a 32a 33a 34a
eigenvalues H -0.39073 -0.34418 -0.32825 -0.30589 -0.29998
eV -10.6324 -9.3658 -8.9322 -8.3238 -8.1630
occupation 2.0000 2.0000 2.0000 2.0000 2.0000
irrep 35a 36a 37a 38a 39a
eigenvalues H -0.04980 0.01349 0.09229 0.11185 0.23731
eV -1.3552 0.3671 2.5114 3.0437 6.4576
==============================================================================
electrostatic moments
==============================================================================
nuc elec -> total
------------------------------------------------------------------------------
charge
------------------------------------------------------------------------------
68.000000 -68.000000 -0.000000
------------------------------------------------------------------------------
dipole moment
------------------------------------------------------------------------------
x -259.592812 259.399094 -0.193718
y 174.235252 -174.459318 -0.224065
z 29.490500 -29.926234 -0.435734
| dipole moment | = 0.5269 a.u. = 1.3392 debye
------------------------------------------------------------------------------
quadrupole moment
------------------------------------------------------------------------------
xx 1358.811973 -1387.614582 -28.802609
yy 547.967181 -580.868302 -32.901120
zz 107.939131 -138.524081 -30.584950
xy -631.923684 632.873979 0.950295
xz -235.792519 238.473008 2.680489
yz 6.474386 -7.262365 -0.787979
1/3 trace= -30.762893
anisotropy= 6.228689
==============================================================================
ridft profiling
--------------------------------------------------------------------
module cpu total (s) % wall total (s) %
RIDFT 2.2 100.00 5.1 100.00
Ridft_b_scf 0.9 40.11 2.0 38.85
b_scf_prelim 0.0 0.89 0.0 0.78
b_scf_molinp 0.3 11.76 0.7 12.98
b_scf_cosmo 0.0 0.00 0.0 0.00
b_scf_init0 0.0 0.00 0.0 0.00
b_scf_auxbas 0.1 6.60 0.4 7.65
b_scf_symmetry 0.0 0.53 0.0 0.51
b_scf_params 0.2 10.16 0.5 9.83
b_scf_ri-j 0.0 2.14 0.1 1.70
b_scf_ri-j_auxpq 0.0 1.78 0.1 1.12
ri-j_auxpq_chol 0.0 0.18 0.0 0.10
b_scf_1elec 0.1 6.24 0.2 3.91
b_scf_moinput 0.0 1.78 0.1 1.49
moinput_orthmos 0.0 0.18 0.0 0.35
b_scf_dft-dstmax 0.0 0.00 0.0 0.00
Ridft_scf 1.3 58.11 3.0 59.05
Scf_b_loop 0.0 0.36 0.0 0.20
noga 0.0 0.00 0.0 0.00
Scf_loop 1.3 57.22 3.0 58.09
scf_loop_mkdmat 0.0 0.00 0.0 0.08
scf_loop_ri-j 0.5 21.75 1.1 21.04
ri-j_near_lpdrc1 0.0 0.36 0.0 0.08
ri-j_near_lpdrc2 0.0 0.00 0.0 0.04
scf_loop_ex-K 0.4 17.47 0.9 18.09
scf_loop_k1 0.4 17.29 0.9 17.52
scf_loop_dft 0.3 14.80 0.8 14.72
dft_grid_con 0.1 3.03 0.2 3.33
dft_xcrhf 0.1 4.28 0.2 4.42
dft_getval 0.0 1.60 0.1 2.25
funct2 dst 0.0 0.00 0.0 0.00
funct2 f2loop1 0.0 0.36 0.0 0.72
funct2 f2loop2 0.0 0.36 0.0 0.78
funct2 s+c 0.0 0.36 0.0 0.31
funct2 cmf_2 0.0 0.36 0.0 0.12
dft_mkdens 0.0 1.60 0.1 1.06
dft_gga-fun 0.0 0.00 0.0 0.20
dft_mkfock 0.0 1.07 0.0 0.69
scf_loop_energy 0.0 0.18 0.0 0.18
scf_loop_mkfock 0.0 0.00 0.0 0.02
scf_loop_diis 0.0 1.78 0.1 2.17
scf_loop_diag 0.0 0.89 0.1 1.59
scf_loop_modump 0.0 0.00 0.0 0.00
Scf_a_loop 0.0 0.53 0.0 0.69
Ridft_a_scf 0.0 1.78 0.1 2.07
a_scf_fanal 0.0 1.43 0.1 1.84
------------------------------------------------------------------------
total cpu-time : 2.27 seconds
total wall-time : 5.17 seconds
------------------------------------------------------------------------
**** ridft : all done ****
2015-05-04 13:55:31.045