immich/server/src/repositories/machine-learning.repository.ts

216 lines
6.4 KiB
TypeScript

import { Injectable } from '@nestjs/common';
import { Duration } from 'luxon';
import { readFile } from 'node:fs/promises';
import { MachineLearningConfig } from 'src/config';
import { CLIPConfig } from 'src/dtos/model-config.dto';
import { LoggingRepository } from 'src/repositories/logging.repository';
export interface BoundingBox {
x1: number;
y1: number;
x2: number;
y2: number;
}
export enum ModelTask {
FACIAL_RECOGNITION = 'facial-recognition',
SEARCH = 'clip',
}
export enum ModelType {
DETECTION = 'detection',
PIPELINE = 'pipeline',
RECOGNITION = 'recognition',
TEXTUAL = 'textual',
VISUAL = 'visual',
}
export type ModelPayload = { imagePath: string } | { text: string };
type ModelOptions = { modelName: string };
export type FaceDetectionOptions = ModelOptions & { minScore: number };
type VisualResponse = { imageHeight: number; imageWidth: number };
export type ClipVisualRequest = { [ModelTask.SEARCH]: { [ModelType.VISUAL]: ModelOptions } };
export type ClipVisualResponse = { [ModelTask.SEARCH]: string } & VisualResponse;
export type ClipTextualRequest = { [ModelTask.SEARCH]: { [ModelType.TEXTUAL]: ModelOptions } };
export type ClipTextualResponse = { [ModelTask.SEARCH]: string };
export type FacialRecognitionRequest = {
[ModelTask.FACIAL_RECOGNITION]: {
[ModelType.DETECTION]: ModelOptions & { options: { minScore: number } };
[ModelType.RECOGNITION]: ModelOptions;
};
};
export interface Face {
boundingBox: BoundingBox;
embedding: string;
score: number;
}
export type FacialRecognitionResponse = { [ModelTask.FACIAL_RECOGNITION]: Face[] } & VisualResponse;
export type DetectedFaces = { faces: Face[] } & VisualResponse;
export type MachineLearningRequest = ClipVisualRequest | ClipTextualRequest | FacialRecognitionRequest;
export type TextEncodingOptions = ModelOptions & { language?: string };
@Injectable()
export class MachineLearningRepository {
private healthyMap: Record<string, boolean> = {};
private interval?: ReturnType<typeof setInterval>;
private _config?: MachineLearningConfig;
private get config(): MachineLearningConfig {
if (!this._config) {
throw new Error('Machine learning repository not been setup');
}
return this._config;
}
constructor(private logger: LoggingRepository) {
this.logger.setContext(MachineLearningRepository.name);
}
setup(config: MachineLearningConfig) {
this._config = config;
this.teardown();
// delete old servers
for (const url of Object.keys(this.healthyMap)) {
if (!config.urls.includes(url)) {
delete this.healthyMap[url];
}
}
if (!config.enabled || !config.availabilityChecks.enabled) {
return;
}
this.tick();
this.interval = setInterval(
() => this.tick(),
Duration.fromObject({ milliseconds: config.availabilityChecks.interval }).as('milliseconds'),
);
}
teardown() {
if (this.interval) {
clearInterval(this.interval);
}
}
private tick() {
for (const url of this.config.urls) {
void this.check(url);
}
}
private async check(url: string) {
let healthy = false;
try {
const response = await fetch(new URL('/ping', url), {
signal: AbortSignal.timeout(this.config.availabilityChecks.timeout),
});
if (response.ok) {
healthy = true;
}
} catch {
// nothing to do here
}
this.setHealthy(url, healthy);
}
private setHealthy(url: string, healthy: boolean) {
if (this.healthyMap[url] !== healthy) {
this.logger.log(`Machine learning server became ${healthy ? 'healthy' : 'unhealthy'} (${url}).`);
}
this.healthyMap[url] = healthy;
}
private isHealthy(url: string) {
if (!this.config.availabilityChecks.enabled) {
return true;
}
return this.healthyMap[url];
}
private async predict<T>(payload: ModelPayload, config: MachineLearningRequest): Promise<T> {
const formData = await this.getFormData(payload, config);
for (const url of [
// try healthy servers first
...this.config.urls.filter((url) => this.isHealthy(url)),
...this.config.urls.filter((url) => !this.isHealthy(url)),
]) {
try {
const response = await fetch(new URL('/predict', url), { method: 'POST', body: formData });
if (response.ok) {
this.setHealthy(url, true);
return response.json();
}
this.logger.warn(
`Machine learning request to "${url}" failed with status ${response.status}: ${response.statusText}`,
);
} catch (error: Error | unknown) {
this.logger.warn(
`Machine learning request to "${url}" failed: ${error instanceof Error ? error.message : error}`,
);
}
this.setHealthy(url, false);
}
throw new Error(`Machine learning request '${JSON.stringify(config)}' failed for all URLs`);
}
async detectFaces(imagePath: string, { modelName, minScore }: FaceDetectionOptions) {
const request = {
[ModelTask.FACIAL_RECOGNITION]: {
[ModelType.DETECTION]: { modelName, options: { minScore } },
[ModelType.RECOGNITION]: { modelName },
},
};
const response = await this.predict<FacialRecognitionResponse>({ imagePath }, request);
return {
imageHeight: response.imageHeight,
imageWidth: response.imageWidth,
faces: response[ModelTask.FACIAL_RECOGNITION],
};
}
async encodeImage(imagePath: string, { modelName }: CLIPConfig) {
const request = { [ModelTask.SEARCH]: { [ModelType.VISUAL]: { modelName } } };
const response = await this.predict<ClipVisualResponse>({ imagePath }, request);
return response[ModelTask.SEARCH];
}
async encodeText(text: string, { language, modelName }: TextEncodingOptions) {
const request = { [ModelTask.SEARCH]: { [ModelType.TEXTUAL]: { modelName, options: { language } } } };
const response = await this.predict<ClipTextualResponse>({ text }, request);
return response[ModelTask.SEARCH];
}
private async getFormData(payload: ModelPayload, config: MachineLearningRequest): Promise<FormData> {
const formData = new FormData();
formData.append('entries', JSON.stringify(config));
if ('imagePath' in payload) {
const fileBuffer = await readFile(payload.imagePath);
formData.append('image', new Blob([new Uint8Array(fileBuffer)]));
} else if ('text' in payload) {
formData.append('text', payload.text);
} else {
throw new Error('Invalid input');
}
return formData;
}
}