immich/server/src/domain/smart-info/smart-info.service.ts

100 lines
3.7 KiB
TypeScript

import { Inject, Injectable } from '@nestjs/common';
import { SystemConfigCore } from 'src/cores/system-config.core';
import { JOBS_ASSET_PAGINATION_SIZE, JobName, QueueName } from 'src/domain/job/job.constants';
import { IBaseJob, IEntityJob } from 'src/domain/job/job.interface';
import { IAssetRepository, WithoutProperty } from 'src/domain/repositories/asset.repository';
import { DatabaseLock, IDatabaseRepository } from 'src/domain/repositories/database.repository';
import { IJobRepository, JobStatus } from 'src/domain/repositories/job.repository';
import { IMachineLearningRepository } from 'src/domain/repositories/machine-learning.repository';
import { ISearchRepository } from 'src/domain/repositories/search.repository';
import { ISystemConfigRepository } from 'src/domain/repositories/system-config.repository';
import { ImmichLogger } from 'src/infra/logger';
import { usePagination } from 'src/utils';
@Injectable()
export class SmartInfoService {
private configCore: SystemConfigCore;
private logger = new ImmichLogger(SmartInfoService.name);
constructor(
@Inject(IAssetRepository) private assetRepository: IAssetRepository,
@Inject(IDatabaseRepository) private databaseRepository: IDatabaseRepository,
@Inject(IJobRepository) private jobRepository: IJobRepository,
@Inject(IMachineLearningRepository) private machineLearning: IMachineLearningRepository,
@Inject(ISearchRepository) private repository: ISearchRepository,
@Inject(ISystemConfigRepository) configRepository: ISystemConfigRepository,
) {
this.configCore = SystemConfigCore.create(configRepository);
}
async init() {
await this.jobRepository.pause(QueueName.SMART_SEARCH);
await this.jobRepository.waitForQueueCompletion(QueueName.SMART_SEARCH);
const { machineLearning } = await this.configCore.getConfig();
await this.databaseRepository.withLock(DatabaseLock.CLIPDimSize, () =>
this.repository.init(machineLearning.clip.modelName),
);
await this.jobRepository.resume(QueueName.SMART_SEARCH);
}
async handleQueueEncodeClip({ force }: IBaseJob): Promise<JobStatus> {
const { machineLearning } = await this.configCore.getConfig();
if (!machineLearning.enabled || !machineLearning.clip.enabled) {
return JobStatus.SKIPPED;
}
if (force) {
await this.repository.deleteAllSearchEmbeddings();
}
const assetPagination = usePagination(JOBS_ASSET_PAGINATION_SIZE, (pagination) => {
return force
? this.assetRepository.getAll(pagination)
: this.assetRepository.getWithout(pagination, WithoutProperty.SMART_SEARCH);
});
for await (const assets of assetPagination) {
await this.jobRepository.queueAll(
assets.map((asset) => ({ name: JobName.SMART_SEARCH, data: { id: asset.id } })),
);
}
return JobStatus.SUCCESS;
}
async handleEncodeClip({ id }: IEntityJob): Promise<JobStatus> {
const { machineLearning } = await this.configCore.getConfig();
if (!machineLearning.enabled || !machineLearning.clip.enabled) {
return JobStatus.SKIPPED;
}
const [asset] = await this.assetRepository.getByIds([id]);
if (!asset) {
return JobStatus.FAILED;
}
if (!asset.resizePath) {
return JobStatus.FAILED;
}
const clipEmbedding = await this.machineLearning.encodeImage(
machineLearning.url,
{ imagePath: asset.resizePath },
machineLearning.clip,
);
if (this.databaseRepository.isBusy(DatabaseLock.CLIPDimSize)) {
this.logger.verbose(`Waiting for CLIP dimension size to be updated`);
await this.databaseRepository.wait(DatabaseLock.CLIPDimSize);
}
await this.repository.upsert({ assetId: asset.id }, clipEmbedding);
return JobStatus.SUCCESS;
}
}