mirror of https://github.com/immich-app/immich.git
refactor(ml): modularization and styling (#2835)
* basic refactor and styling * removed batching * module entrypoint * removed unused imports * model superclass, model cache now in app state * fixed cache dir and enforced abstract method --------- Co-authored-by: Alex Tran <alex.tran1502@gmail.com>pull/2942/head
parent
837ad24f58
commit
a2f5674bbb
@ -1,119 +0,0 @@
|
||||
import torch
|
||||
from insightface.app import FaceAnalysis
|
||||
from pathlib import Path
|
||||
|
||||
from transformers import pipeline, Pipeline
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from typing import Any, BinaryIO
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from config import settings
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
|
||||
def get_model(model_name: str, model_type: str, **model_kwargs):
|
||||
"""
|
||||
Instantiates the specified model.
|
||||
|
||||
Args:
|
||||
model_name: Name of model in the model hub used for the task.
|
||||
model_type: Model type or task, which determines which model zoo is used.
|
||||
`facial-recognition` uses Insightface, while all other models use the HF Model Hub.
|
||||
|
||||
Options:
|
||||
`image-classification`, `clip`,`facial-recognition`, `tokenizer`, `processor`
|
||||
|
||||
Returns:
|
||||
model: The requested model.
|
||||
"""
|
||||
|
||||
cache_dir = _get_cache_dir(model_name, model_type)
|
||||
match model_type:
|
||||
case "facial-recognition":
|
||||
model = _load_facial_recognition(
|
||||
model_name, cache_dir=cache_dir, **model_kwargs
|
||||
)
|
||||
case "clip":
|
||||
model = SentenceTransformer(
|
||||
model_name, cache_folder=cache_dir, **model_kwargs
|
||||
)
|
||||
case _:
|
||||
model = pipeline(
|
||||
model_type,
|
||||
model_name,
|
||||
model_kwargs={"cache_dir": cache_dir, **model_kwargs},
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def run_classification(
|
||||
model: Pipeline, image: Image, min_score: float | None = None
|
||||
):
|
||||
predictions: list[dict[str, Any]] = model(image) # type: ignore
|
||||
result = {
|
||||
tag
|
||||
for pred in predictions
|
||||
for tag in pred["label"].split(", ")
|
||||
if min_score is None or pred["score"] >= min_score
|
||||
}
|
||||
|
||||
return list(result)
|
||||
|
||||
|
||||
def run_facial_recognition(
|
||||
model: FaceAnalysis, image: bytes
|
||||
) -> list[dict[str, Any]]:
|
||||
file_bytes = np.frombuffer(image, dtype=np.uint8)
|
||||
img = cv.imdecode(file_bytes, cv.IMREAD_COLOR)
|
||||
height, width, _ = img.shape
|
||||
results = []
|
||||
faces = model.get(img)
|
||||
|
||||
for face in faces:
|
||||
x1, y1, x2, y2 = face.bbox
|
||||
|
||||
results.append(
|
||||
{
|
||||
"imageWidth": width,
|
||||
"imageHeight": height,
|
||||
"boundingBox": {
|
||||
"x1": round(x1),
|
||||
"y1": round(y1),
|
||||
"x2": round(x2),
|
||||
"y2": round(y2),
|
||||
},
|
||||
"score": face.det_score.item(),
|
||||
"embedding": face.normed_embedding.tolist(),
|
||||
}
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def _load_facial_recognition(
|
||||
model_name: str,
|
||||
min_face_score: float | None = None,
|
||||
cache_dir: Path | str | None = None,
|
||||
**model_kwargs,
|
||||
):
|
||||
if cache_dir is None:
|
||||
cache_dir = _get_cache_dir(model_name, "facial-recognition")
|
||||
if isinstance(cache_dir, Path):
|
||||
cache_dir = cache_dir.as_posix()
|
||||
if min_face_score is None:
|
||||
min_face_score = settings.min_face_score
|
||||
|
||||
model = FaceAnalysis(
|
||||
name=model_name,
|
||||
root=cache_dir,
|
||||
allowed_modules=["detection", "recognition"],
|
||||
**model_kwargs,
|
||||
)
|
||||
model.prepare(ctx_id=0, det_thresh=min_face_score, det_size=(640, 640))
|
||||
return model
|
||||
|
||||
|
||||
def _get_cache_dir(model_name: str, model_type: str) -> Path:
|
||||
return Path(settings.cache_folder, device, model_type, model_name)
|
||||
@ -0,0 +1,3 @@
|
||||
from .clip import CLIPSTTextEncoder, CLIPSTVisionEncoder
|
||||
from .facial_recognition import FaceRecognizer
|
||||
from .image_classification import ImageClassifier
|
||||
@ -0,0 +1,52 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import abstractmethod, ABC
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from ..config import get_cache_dir
|
||||
from ..schemas import ModelType
|
||||
|
||||
|
||||
class InferenceModel(ABC):
|
||||
_model_type: ModelType
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: Path | None = None,
|
||||
):
|
||||
self.model_name = model_name
|
||||
self._cache_dir = (
|
||||
cache_dir
|
||||
if cache_dir is not None
|
||||
else get_cache_dir(model_name, self.model_type)
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def predict(self, inputs: Any) -> Any:
|
||||
...
|
||||
|
||||
@property
|
||||
def model_type(self) -> ModelType:
|
||||
return self._model_type
|
||||
|
||||
@property
|
||||
def cache_dir(self) -> Path:
|
||||
return self._cache_dir
|
||||
|
||||
@cache_dir.setter
|
||||
def cache_dir(self, cache_dir: Path):
|
||||
self._cache_dir = cache_dir
|
||||
|
||||
@classmethod
|
||||
def from_model_type(
|
||||
cls, model_type: ModelType, model_name, **model_kwargs
|
||||
) -> InferenceModel:
|
||||
subclasses = {
|
||||
subclass._model_type: subclass for subclass in cls.__subclasses__()
|
||||
}
|
||||
if model_type not in subclasses:
|
||||
raise ValueError(f"Unsupported model type: {model_type}")
|
||||
|
||||
return subclasses[model_type](model_name, **model_kwargs)
|
||||
@ -0,0 +1,37 @@
|
||||
from pathlib import Path
|
||||
|
||||
from PIL.Image import Image
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
from ..schemas import ModelType
|
||||
from .base import InferenceModel
|
||||
|
||||
|
||||
class CLIPSTEncoder(InferenceModel):
|
||||
_model_type = ModelType.CLIP
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: Path | None = None,
|
||||
**model_kwargs,
|
||||
):
|
||||
super().__init__(model_name, cache_dir)
|
||||
self.model = SentenceTransformer(
|
||||
self.model_name,
|
||||
cache_folder=self.cache_dir.as_posix(),
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
def predict(self, image_or_text: Image | str) -> list[float]:
|
||||
return self.model.encode(image_or_text).tolist()
|
||||
|
||||
|
||||
# stubs to allow different behavior between the two in the future
|
||||
# and handle loading different image and text clip models
|
||||
class CLIPSTVisionEncoder(CLIPSTEncoder):
|
||||
_model_type = ModelType.CLIP_VISION
|
||||
|
||||
|
||||
class CLIPSTTextEncoder(CLIPSTEncoder):
|
||||
_model_type = ModelType.CLIP_TEXT
|
||||
@ -0,0 +1,59 @@
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import cv2
|
||||
from insightface.app import FaceAnalysis
|
||||
|
||||
from ..config import settings
|
||||
from ..schemas import ModelType
|
||||
from .base import InferenceModel
|
||||
|
||||
|
||||
class FaceRecognizer(InferenceModel):
|
||||
_model_type = ModelType.FACIAL_RECOGNITION
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
min_score: float = settings.min_face_score,
|
||||
cache_dir: Path | None = None,
|
||||
**model_kwargs,
|
||||
):
|
||||
super().__init__(model_name, cache_dir)
|
||||
self.min_score = min_score
|
||||
model = FaceAnalysis(
|
||||
name=self.model_name,
|
||||
root=self.cache_dir.as_posix(),
|
||||
allowed_modules=["detection", "recognition"],
|
||||
**model_kwargs,
|
||||
)
|
||||
model.prepare(
|
||||
ctx_id=0,
|
||||
det_thresh=self.min_score,
|
||||
det_size=(640, 640),
|
||||
)
|
||||
self.model = model
|
||||
|
||||
def predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
|
||||
height, width, _ = image.shape
|
||||
results = []
|
||||
faces = self.model.get(image)
|
||||
|
||||
for face in faces:
|
||||
x1, y1, x2, y2 = face.bbox
|
||||
|
||||
results.append(
|
||||
{
|
||||
"imageWidth": width,
|
||||
"imageHeight": height,
|
||||
"boundingBox": {
|
||||
"x1": round(x1),
|
||||
"y1": round(y1),
|
||||
"x2": round(x2),
|
||||
"y2": round(y2),
|
||||
},
|
||||
"score": face.det_score.item(),
|
||||
"embedding": face.normed_embedding.tolist(),
|
||||
}
|
||||
)
|
||||
return results
|
||||
@ -0,0 +1,40 @@
|
||||
from pathlib import Path
|
||||
|
||||
from PIL.Image import Image
|
||||
from transformers.pipelines import pipeline
|
||||
|
||||
from ..config import settings
|
||||
from ..schemas import ModelType
|
||||
from .base import InferenceModel
|
||||
|
||||
|
||||
class ImageClassifier(InferenceModel):
|
||||
_model_type = ModelType.IMAGE_CLASSIFICATION
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
min_score: float = settings.min_tag_score,
|
||||
cache_dir: Path | None = None,
|
||||
**model_kwargs,
|
||||
):
|
||||
super().__init__(model_name, cache_dir)
|
||||
self.min_score = min_score
|
||||
|
||||
self.model = pipeline(
|
||||
self.model_type.value,
|
||||
self.model_name,
|
||||
model_kwargs={"cache_dir": self.cache_dir, **model_kwargs},
|
||||
)
|
||||
|
||||
def predict(self, image: Image) -> list[str]:
|
||||
predictions = self.model(image)
|
||||
tags = list(
|
||||
{
|
||||
tag
|
||||
for pred in predictions
|
||||
for tag in pred["label"].split(", ")
|
||||
if pred["score"] >= self.min_score
|
||||
}
|
||||
)
|
||||
return tags
|
||||
Loading…
Reference in New Issue