|
|
|
|
@ -1,9 +1,8 @@
|
|
|
|
|
from typing import Any
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
|
import numpy as np
|
|
|
|
|
from numpy.typing import NDArray
|
|
|
|
|
from PIL.Image import Image
|
|
|
|
|
from PIL import Image
|
|
|
|
|
from rapidocr.ch_ppocr_rec import TextRecInput
|
|
|
|
|
from rapidocr.ch_ppocr_rec import TextRecognizer as RapidTextRecognizer
|
|
|
|
|
from rapidocr.inference_engine.base import FileInfo, InferSession
|
|
|
|
|
@ -14,6 +13,7 @@ from rapidocr.utils.vis_res import VisRes
|
|
|
|
|
|
|
|
|
|
from immich_ml.config import log, settings
|
|
|
|
|
from immich_ml.models.base import InferenceModel
|
|
|
|
|
from immich_ml.models.transforms import pil_to_cv2
|
|
|
|
|
from immich_ml.schemas import ModelFormat, ModelSession, ModelTask, ModelType
|
|
|
|
|
from immich_ml.sessions.ort import OrtSession
|
|
|
|
|
|
|
|
|
|
@ -65,17 +65,16 @@ class TextRecognizer(InferenceModel):
|
|
|
|
|
)
|
|
|
|
|
return session
|
|
|
|
|
|
|
|
|
|
def _predict(self, _: Image, texts: TextDetectionOutput) -> TextRecognitionOutput:
|
|
|
|
|
boxes, img, box_scores = texts["boxes"], texts["image"], texts["scores"]
|
|
|
|
|
def _predict(self, img: Image.Image, texts: TextDetectionOutput) -> TextRecognitionOutput:
|
|
|
|
|
boxes, box_scores = texts["boxes"], texts["scores"]
|
|
|
|
|
if boxes.shape[0] == 0:
|
|
|
|
|
return self._empty
|
|
|
|
|
rec = self.model(TextRecInput(img=self.get_crop_img_list(img, boxes)))
|
|
|
|
|
if rec.txts is None:
|
|
|
|
|
return self._empty
|
|
|
|
|
|
|
|
|
|
height, width = img.shape[0:2]
|
|
|
|
|
boxes[:, :, 0] /= width
|
|
|
|
|
boxes[:, :, 1] /= height
|
|
|
|
|
boxes[:, :, 0] /= img.width
|
|
|
|
|
boxes[:, :, 1] /= img.height
|
|
|
|
|
|
|
|
|
|
text_scores = np.array(rec.scores)
|
|
|
|
|
valid_text_score_idx = text_scores > self.min_score
|
|
|
|
|
@ -87,7 +86,7 @@ class TextRecognizer(InferenceModel):
|
|
|
|
|
"textScore": text_scores[valid_text_score_idx],
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def get_crop_img_list(self, img: NDArray[np.float32], boxes: NDArray[np.float32]) -> list[NDArray[np.float32]]:
|
|
|
|
|
def get_crop_img_list(self, img: Image.Image, boxes: NDArray[np.float32]) -> list[NDArray[np.uint8]]:
|
|
|
|
|
img_crop_width = np.maximum(
|
|
|
|
|
np.linalg.norm(boxes[:, 1] - boxes[:, 0], axis=1), np.linalg.norm(boxes[:, 2] - boxes[:, 3], axis=1)
|
|
|
|
|
).astype(np.int32)
|
|
|
|
|
@ -98,22 +97,55 @@ class TextRecognizer(InferenceModel):
|
|
|
|
|
pts_std[:, 1:3, 0] = img_crop_width[:, None]
|
|
|
|
|
pts_std[:, 2:4, 1] = img_crop_height[:, None]
|
|
|
|
|
|
|
|
|
|
img_crop_sizes = np.stack([img_crop_width, img_crop_height], axis=1).tolist()
|
|
|
|
|
imgs: list[NDArray[np.float32]] = []
|
|
|
|
|
for box, pts_std, dst_size in zip(list(boxes), list(pts_std), img_crop_sizes):
|
|
|
|
|
M = cv2.getPerspectiveTransform(box, pts_std)
|
|
|
|
|
dst_img: NDArray[np.float32] = cv2.warpPerspective(
|
|
|
|
|
img,
|
|
|
|
|
M,
|
|
|
|
|
dst_size,
|
|
|
|
|
borderMode=cv2.BORDER_REPLICATE,
|
|
|
|
|
flags=cv2.INTER_CUBIC,
|
|
|
|
|
) # type: ignore
|
|
|
|
|
dst_height, dst_width = dst_img.shape[0:2]
|
|
|
|
|
img_crop_sizes = np.stack([img_crop_width, img_crop_height], axis=1)
|
|
|
|
|
all_coeffs = self._get_perspective_transform(pts_std, boxes)
|
|
|
|
|
imgs: list[NDArray[np.uint8]] = []
|
|
|
|
|
for coeffs, dst_size in zip(all_coeffs, img_crop_sizes):
|
|
|
|
|
dst_img = img.transform(
|
|
|
|
|
size=tuple(dst_size),
|
|
|
|
|
method=Image.Transform.PERSPECTIVE,
|
|
|
|
|
data=tuple(coeffs),
|
|
|
|
|
resample=Image.Resampling.BICUBIC,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
dst_width, dst_height = dst_img.size
|
|
|
|
|
if dst_height * 1.0 / dst_width >= 1.5:
|
|
|
|
|
dst_img = np.rot90(dst_img)
|
|
|
|
|
imgs.append(dst_img)
|
|
|
|
|
dst_img = dst_img.rotate(90, expand=True)
|
|
|
|
|
imgs.append(pil_to_cv2(dst_img))
|
|
|
|
|
|
|
|
|
|
return imgs
|
|
|
|
|
|
|
|
|
|
def _get_perspective_transform(self, src: NDArray[np.float32], dst: NDArray[np.float32]) -> NDArray[np.float32]:
|
|
|
|
|
N = src.shape[0]
|
|
|
|
|
x, y = src[:, :, 0], src[:, :, 1]
|
|
|
|
|
u, v = dst[:, :, 0], dst[:, :, 1]
|
|
|
|
|
A = np.zeros((N, 8, 9), dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
# Fill even rows (0, 2, 4, 6): [x, y, 1, 0, 0, 0, -u*x, -u*y, -u]
|
|
|
|
|
A[:, ::2, 0] = x
|
|
|
|
|
A[:, ::2, 1] = y
|
|
|
|
|
A[:, ::2, 2] = 1
|
|
|
|
|
A[:, ::2, 6] = -u * x
|
|
|
|
|
A[:, ::2, 7] = -u * y
|
|
|
|
|
A[:, ::2, 8] = -u
|
|
|
|
|
|
|
|
|
|
# Fill odd rows (1, 3, 5, 7): [0, 0, 0, x, y, 1, -v*x, -v*y, -v]
|
|
|
|
|
A[:, 1::2, 3] = x
|
|
|
|
|
A[:, 1::2, 4] = y
|
|
|
|
|
A[:, 1::2, 5] = 1
|
|
|
|
|
A[:, 1::2, 6] = -v * x
|
|
|
|
|
A[:, 1::2, 7] = -v * y
|
|
|
|
|
A[:, 1::2, 8] = -v
|
|
|
|
|
|
|
|
|
|
# Solve using SVD for all matrices at once
|
|
|
|
|
_, _, Vt = np.linalg.svd(A)
|
|
|
|
|
H = Vt[:, -1, :].reshape(N, 3, 3)
|
|
|
|
|
H = H / H[:, 2:3, 2:3]
|
|
|
|
|
|
|
|
|
|
# Extract the 8 coefficients for each transformation
|
|
|
|
|
return np.column_stack(
|
|
|
|
|
[H[:, 0, 0], H[:, 0, 1], H[:, 0, 2], H[:, 1, 0], H[:, 1, 1], H[:, 1, 2], H[:, 2, 0], H[:, 2, 1]]
|
|
|
|
|
) # pyright: ignore[reportReturnType]
|
|
|
|
|
|
|
|
|
|
def configure(self, **kwargs: Any) -> None:
|
|
|
|
|
self.min_score = kwargs.get("minScore", self.min_score)
|
|
|
|
|
|