difftastic/src/diff/graph.rs

854 lines
30 KiB
Rust

//! A graph representation for computing tree diffs.
use std::{
cell::{Cell, RefCell},
cmp::min,
fmt,
hash::{Hash, Hasher},
};
use bumpalo::Bump;
use hashbrown::hash_map::RawEntryMut;
use smallvec::{smallvec, SmallVec};
use strsim::normalized_levenshtein;
use self::Edge::*;
use crate::{
diff::{
changes::{insert_deep_unchanged, ChangeKind, ChangeMap},
stack::Stack,
},
hash::DftHashMap,
parse::syntax::{AtomKind, Syntax, SyntaxId},
};
/// A vertex in a directed acyclic graph that represents a diff.
///
/// Each vertex represents two pointers: one to the next unmatched LHS
/// syntax, and one to the next unmatched RHS syntax.
///
/// For example, suppose we have `X A` on the LHS and `A` on the
/// RHS. Our start vertex looks like this.
///
/// ```text
/// LHS: X A RHS: A
/// ^ ^
/// ```
///
/// From this vertex, we could take [`Edge::NovelAtomLHS`], bringing
/// us to this vertex.
///
/// ```text
/// LHS: X A RHS: A
/// ^ ^
/// ```
///
/// Alternatively, we could take the [`Edge::NovelAtomRHS`], bringing us
/// to this vertex.
///
/// ```text
/// LHS: X A RHS: A
/// ^ ^
/// ```
///
/// Vertices are arena allocated (the 'v lifetime) and have references
/// to syntax nodes (the 's lifetime).
#[derive(Debug, Clone)]
pub(crate) struct Vertex<'s, 'v> {
pub(crate) neighbours: RefCell<Option<&'v [(Edge, &'v Vertex<'s, 'v>)]>>,
pub(crate) predecessor: Cell<Option<(u32, &'v Vertex<'s, 'v>)>>,
// TODO: experiment with storing SyntaxId only, and have a HashMap
// from SyntaxId to &Syntax.
pub(crate) lhs_syntax: Option<&'s Syntax<'s>>,
pub(crate) rhs_syntax: Option<&'s Syntax<'s>>,
parents: Stack<'v, EnteredDelimiter<'s, 'v>>,
lhs_parent_id: Option<SyntaxId>,
rhs_parent_id: Option<SyntaxId>,
}
impl PartialEq for Vertex<'_, '_> {
fn eq(&self, other: &Self) -> bool {
// Strictly speaking, we should compare the whole
// EnteredDelimiter stack, not just the immediate
// parents. By taking the immediate parent, we have
// vertices with different stacks that are 'equal'.
//
// This makes the graph traversal path dependent: the
// first vertex we see 'wins', and we use it for deciding
// how we can pop.
//
// In practice this seems to work well. The first vertex
// has the lowest cost, so has the most PopBoth
// occurrences, which is the best outcome.
//
// Handling this properly would require considering many
// more vertices to be distinct, exponentially increasing
// the graph size relative to tree depth.
let b0 = match (self.lhs_syntax, other.lhs_syntax) {
(Some(s0), Some(s1)) => s0.id() == s1.id(),
(None, None) => self.lhs_parent_id == other.lhs_parent_id,
_ => false,
};
let b1 = match (self.rhs_syntax, other.rhs_syntax) {
(Some(s0), Some(s1)) => s0.id() == s1.id(),
(None, None) => self.rhs_parent_id == other.rhs_parent_id,
_ => false,
};
// We do want to distinguish whether we can pop each side
// independently though. Without this, if we find a case
// where we can pop sides together, we don't consider the
// case where we get a better diff by popping each side
// separately.
let b2 = can_pop_either_parent(&self.parents) == can_pop_either_parent(&other.parents);
b0 && b1 && b2
}
}
impl Eq for Vertex<'_, '_> {}
impl Hash for Vertex<'_, '_> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.lhs_syntax.map(|node| node.id()).hash(state);
self.rhs_syntax.map(|node| node.id()).hash(state);
self.lhs_parent_id.hash(state);
self.rhs_parent_id.hash(state);
can_pop_either_parent(&self.parents).hash(state);
}
}
/// Tracks entering syntax List nodes.
#[derive(Clone, PartialEq)]
enum EnteredDelimiter<'s, 'v> {
/// If we've entered the LHS or RHS separately, we can pop either
/// side independently.
///
/// Assumes that at least one stack is non-empty.
PopEither((Stack<'v, &'s Syntax<'s>>, Stack<'v, &'s Syntax<'s>>)),
/// If we've entered the LHS and RHS together, we must pop both
/// sides together too. Otherwise we'd consider the following case to have no changes.
///
/// ```text
/// Old: (a b c)
/// New: (a b) c
/// ```
PopBoth((&'s Syntax<'s>, &'s Syntax<'s>)),
}
impl fmt::Debug for EnteredDelimiter<'_, '_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let desc = match self {
Self::PopEither((lhs_delims, rhs_delims)) => {
format!(
"PopEither(lhs count: {}, rhs count: {})",
lhs_delims.size(),
rhs_delims.size()
)
}
Self::PopBoth(_) => "PopBoth".to_owned(),
};
f.write_str(&desc)
}
}
fn push_both_delimiters<'s, 'v>(
entered: &Stack<'v, EnteredDelimiter<'s, 'v>>,
lhs_delim: &'s Syntax<'s>,
rhs_delim: &'s Syntax<'s>,
alloc: &'v Bump,
) -> Stack<'v, EnteredDelimiter<'s, 'v>> {
entered.push(EnteredDelimiter::PopBoth((lhs_delim, rhs_delim)), alloc)
}
fn can_pop_either_parent(entered: &Stack<EnteredDelimiter>) -> bool {
matches!(entered.peek(), Some(EnteredDelimiter::PopEither(_)))
}
fn try_pop_both<'s, 'v>(
entered: &Stack<'v, EnteredDelimiter<'s, 'v>>,
) -> Option<(
&'s Syntax<'s>,
&'s Syntax<'s>,
Stack<'v, EnteredDelimiter<'s, 'v>>,
)> {
match entered.peek() {
Some(EnteredDelimiter::PopBoth((lhs_delim, rhs_delim))) => {
Some((lhs_delim, rhs_delim, entered.pop().unwrap()))
}
_ => None,
}
}
fn try_pop_lhs<'s, 'v>(
entered: &Stack<'v, EnteredDelimiter<'s, 'v>>,
alloc: &'v Bump,
) -> Option<(&'s Syntax<'s>, Stack<'v, EnteredDelimiter<'s, 'v>>)> {
match entered.peek() {
Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => match lhs_delims.peek() {
Some(lhs_delim) => {
let mut entered = entered.pop().unwrap();
let new_lhs_delims = lhs_delims.pop().unwrap();
if !new_lhs_delims.is_empty() || !rhs_delims.is_empty() {
entered = entered.push(
EnteredDelimiter::PopEither((new_lhs_delims, rhs_delims.clone())),
alloc,
);
}
Some((lhs_delim, entered))
}
None => None,
},
_ => None,
}
}
fn try_pop_rhs<'s, 'v>(
entered: &Stack<'v, EnteredDelimiter<'s, 'v>>,
alloc: &'v Bump,
) -> Option<(&'s Syntax<'s>, Stack<'v, EnteredDelimiter<'s, 'v>>)> {
match entered.peek() {
Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => match rhs_delims.peek() {
Some(rhs_delim) => {
let mut entered = entered.pop().unwrap();
let new_rhs_delims = rhs_delims.pop().unwrap();
if !lhs_delims.is_empty() || !new_rhs_delims.is_empty() {
entered = entered.push(
EnteredDelimiter::PopEither((lhs_delims.clone(), new_rhs_delims)),
alloc,
);
}
Some((rhs_delim, entered))
}
None => None,
},
_ => None,
}
}
fn push_lhs_delimiter<'s, 'v>(
entered: &Stack<'v, EnteredDelimiter<'s, 'v>>,
delimiter: &'s Syntax<'s>,
alloc: &'v Bump,
) -> Stack<'v, EnteredDelimiter<'s, 'v>> {
match entered.peek() {
Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => entered.pop().unwrap().push(
EnteredDelimiter::PopEither((lhs_delims.push(delimiter, alloc), rhs_delims.clone())),
alloc,
),
_ => entered.push(
EnteredDelimiter::PopEither((Stack::new().push(delimiter, alloc), Stack::new())),
alloc,
),
}
}
fn push_rhs_delimiter<'s, 'v>(
entered: &Stack<'v, EnteredDelimiter<'s, 'v>>,
delimiter: &'s Syntax<'s>,
alloc: &'v Bump,
) -> Stack<'v, EnteredDelimiter<'s, 'v>> {
match entered.peek() {
Some(EnteredDelimiter::PopEither((lhs_delims, rhs_delims))) => entered.pop().unwrap().push(
EnteredDelimiter::PopEither((lhs_delims.clone(), rhs_delims.push(delimiter, alloc))),
alloc,
),
_ => entered.push(
EnteredDelimiter::PopEither((Stack::new(), Stack::new().push(delimiter, alloc))),
alloc,
),
}
}
impl<'s, 'v> Vertex<'s, 'v> {
pub(crate) fn is_end(&self) -> bool {
self.lhs_syntax.is_none() && self.rhs_syntax.is_none() && self.parents.is_empty()
}
pub(crate) fn new(
lhs_syntax: Option<&'s Syntax<'s>>,
rhs_syntax: Option<&'s Syntax<'s>>,
) -> Self {
let parents = Stack::new();
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id: None,
rhs_parent_id: None,
}
}
}
/// An edge in our graph, with an associated [`cost`](Edge::cost).
///
/// A syntax node can always be marked as novel, so a vertex will have
/// at least a NovelFoo edge. Depending on the syntax nodes of the
/// current [`Vertex`], other edges may also be available.
///
/// See [`set_neighbours`] for all the edges available for a given `Vertex`.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub(crate) enum Edge {
UnchangedNode {
depth_difference: u32,
/// Is this node just punctuation? We penalise this case,
/// because it's more useful to match e.g. a variable name
/// than a comma.
probably_punctuation: bool,
},
EnterUnchangedDelimiter {
depth_difference: u32,
},
ReplacedComment {
levenshtein_pct: u8,
},
ReplacedString {
levenshtein_pct: u8,
},
NovelAtomLHS {},
NovelAtomRHS {},
// TODO: An EnterNovelDelimiterBoth edge might help performance
// rather doing LHS and RHS separately.
EnterNovelDelimiterLHS {},
EnterNovelDelimiterRHS {},
}
impl Edge {
pub(crate) fn cost(self) -> u32 {
match self {
// Matching nodes is always best.
UnchangedNode {
depth_difference,
probably_punctuation,
} => {
// TODO: Perhaps prefer matching longer strings? It's
// probably easier to read.
// The cost for unchanged nodes can be as low as 1,
// but we penalise nodes that have a different depth
// difference, capped at 40.
let base = min(40, depth_difference + 1);
// If the node is only punctuation, increase the
// cost. It's better to have unchanged variable names
// and novel punctuation than the reverse.
//
// We want a sufficiently large punctuation cost such
// that unchanged variables always win, even if there
// are replacement edges elsewhere.
//
// Replacement edges have a cost between 500 and 600,
// so they can be up to 100 less than two novel nodes.
// If we have replacements either side of a node
// (e.g. see comma_and_comment_1.js), then that's
// potentially a cost difference of 200.
base + if probably_punctuation { 200 } else { 0 }
}
// Matching an outer delimiter is good.
EnterUnchangedDelimiter { depth_difference } => 100 + min(40, depth_difference),
// Otherwise, we've added/removed a node.
NovelAtomLHS {} | NovelAtomRHS {} => 300,
EnterNovelDelimiterLHS { .. } | EnterNovelDelimiterRHS { .. } => 300,
// Replacing a comment is better than treating it as
// novel. However, since ReplacedComment is an alternative
// to NovelAtomLHS and NovelAtomRHS, we need to be
// slightly less than 2 * 300.
ReplacedComment { levenshtein_pct } | ReplacedString { levenshtein_pct } => {
500 + u32::from(100 - levenshtein_pct)
}
}
}
}
fn allocate_if_new<'s, 'v>(
v: Vertex<'s, 'v>,
alloc: &'v Bump,
seen: &mut DftHashMap<&Vertex<'s, 'v>, SmallVec<[&'v Vertex<'s, 'v>; 2]>>,
) -> &'v Vertex<'s, 'v> {
// We use the entry API so that we only need to do a single lookup
// for access and insert.
match seen.raw_entry_mut().from_key(&v) {
RawEntryMut::Occupied(mut occupied) => {
let existing = occupied.get_mut();
// Don't explore more than two possible parenthesis
// nestings for each syntax node pair.
if let Some(allocated) = existing.last() {
if existing.len() >= 2 {
return allocated;
}
}
// If we have seen exactly this graph node before, even
// considering parenthesis matching, return it.
for existing_node in existing.iter() {
if existing_node.parents == v.parents {
return existing_node;
}
}
// We haven't reached the graph node limit yet, allocate a
// new one.
let allocated = alloc.alloc(v);
existing.push(allocated);
allocated
}
RawEntryMut::Vacant(vacant) => {
let allocated = alloc.alloc(v);
// We know that this vec will never have more than 2
// nodes, and this code is very hot, so use a smallvec.
//
// We still use a vec to enable experiments with the value
// of how many possible parenthesis nestings to explore.
let existing: SmallVec<[&'v Vertex<'s, 'v>; 2]> = smallvec![&*allocated];
vacant.insert(allocated, existing);
allocated
}
}
}
/// Does this node look like punctuation?
///
/// This check is deliberately conservative, because it's hard to
/// accurately recognise punctuation in a language-agnostic way.
fn looks_like_punctuation(node: &Syntax) -> bool {
match node {
Syntax::Atom { content, .. } => content == "," || content == ";" || content == ".",
_ => false,
}
}
/// Pop as many parents of `lhs_node` and `rhs_node` as
/// possible. Return the new syntax nodes and parents.
fn pop_all_parents<'s, 'v>(
lhs_node: Option<&'s Syntax<'s>>,
rhs_node: Option<&'s Syntax<'s>>,
lhs_parent_id: Option<SyntaxId>,
rhs_parent_id: Option<SyntaxId>,
parents: &Stack<'v, EnteredDelimiter<'s, 'v>>,
alloc: &'v Bump,
) -> (
Option<&'s Syntax<'s>>,
Option<&'s Syntax<'s>>,
Option<SyntaxId>,
Option<SyntaxId>,
Stack<'v, EnteredDelimiter<'s, 'v>>,
) {
let mut lhs_node = lhs_node;
let mut rhs_node = rhs_node;
let mut lhs_parent_id = lhs_parent_id;
let mut rhs_parent_id = rhs_parent_id;
let mut parents = parents.clone();
loop {
if lhs_node.is_none() {
if let Some((lhs_parent, parents_next)) = try_pop_lhs(&parents, alloc) {
// Move to next after LHS parent.
// Continue from sibling of parent.
lhs_node = lhs_parent.next_sibling();
lhs_parent_id = lhs_parent.parent().map(Syntax::id);
parents = parents_next;
continue;
}
}
if rhs_node.is_none() {
if let Some((rhs_parent, parents_next)) = try_pop_rhs(&parents, alloc) {
// Move to next after RHS parent.
// Continue from sibling of parent.
rhs_node = rhs_parent.next_sibling();
rhs_parent_id = rhs_parent.parent().map(Syntax::id);
parents = parents_next;
continue;
}
}
if lhs_node.is_none() && rhs_node.is_none() {
// We have exhausted all the nodes on both lists, so we can
// move up to the parent node.
// Continue from sibling of parent.
if let Some((lhs_parent, rhs_parent, parents_next)) = try_pop_both(&parents) {
lhs_node = lhs_parent.next_sibling();
rhs_node = rhs_parent.next_sibling();
lhs_parent_id = lhs_parent.parent().map(Syntax::id);
rhs_parent_id = rhs_parent.parent().map(Syntax::id);
parents = parents_next;
continue;
}
}
break;
}
(lhs_node, rhs_node, lhs_parent_id, rhs_parent_id, parents)
}
/// Compute the neighbours of `v` if we haven't previously done so,
/// and write them to the .neighbours cell inside `v`.
pub(crate) fn set_neighbours<'s, 'v>(
v: &Vertex<'s, 'v>,
alloc: &'v Bump,
seen: &mut DftHashMap<&Vertex<'s, 'v>, SmallVec<[&'v Vertex<'s, 'v>; 2]>>,
) {
if v.neighbours.borrow().is_some() {
return;
}
// There are only seven pushes in this function, so that's sufficient.
let mut neighbours: Vec<(Edge, &Vertex)> = Vec::with_capacity(7);
if let (Some(lhs_syntax), Some(rhs_syntax)) = (&v.lhs_syntax, &v.rhs_syntax) {
if lhs_syntax == rhs_syntax {
let depth_difference = (lhs_syntax.num_ancestors() as i32
- rhs_syntax.num_ancestors() as i32)
.unsigned_abs();
let probably_punctuation = looks_like_punctuation(lhs_syntax);
// Both nodes are equal, the happy case.
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) = pop_all_parents(
lhs_syntax.next_sibling(),
rhs_syntax.next_sibling(),
v.lhs_parent_id,
v.rhs_parent_id,
&v.parents,
alloc,
);
neighbours.push((
UnchangedNode {
depth_difference,
probably_punctuation,
},
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
if let (
Syntax::List {
open_content: lhs_open_content,
close_content: lhs_close_content,
children: lhs_children,
..
},
Syntax::List {
open_content: rhs_open_content,
close_content: rhs_close_content,
children: rhs_children,
..
},
) = (lhs_syntax, rhs_syntax)
{
// The list delimiters are equal, but children may not be.
if lhs_open_content == rhs_open_content && lhs_close_content == rhs_close_content {
let lhs_next = lhs_children.first().copied();
let rhs_next = rhs_children.first().copied();
// TODO: be consistent between parents_next and next_parents.
let parents_next = push_both_delimiters(&v.parents, lhs_syntax, rhs_syntax, alloc);
let depth_difference = (lhs_syntax.num_ancestors() as i32
- rhs_syntax.num_ancestors() as i32)
.unsigned_abs();
// When we enter a list, we may need to immediately
// pop several levels if the list has no children.
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
lhs_next,
rhs_next,
Some(lhs_syntax.id()),
Some(rhs_syntax.id()),
&parents_next,
alloc,
);
neighbours.push((
EnterUnchangedDelimiter { depth_difference },
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
}
if let (
Syntax::Atom {
content: lhs_content,
kind: lhs_kind @ AtomKind::Comment | lhs_kind @ AtomKind::String(_),
..
},
Syntax::Atom {
content: rhs_content,
kind: rhs_kind @ AtomKind::Comment | rhs_kind @ AtomKind::String(_),
..
},
) = (lhs_syntax, rhs_syntax)
{
// Both sides are comments/both sides are strings and
// their content is reasonably similar.
if lhs_kind == rhs_kind && lhs_content != rhs_content {
let levenshtein_pct =
(normalized_levenshtein(lhs_content, rhs_content) * 100.0).round() as u8;
let edge = if lhs_kind == &AtomKind::Comment {
ReplacedComment { levenshtein_pct }
} else {
ReplacedString { levenshtein_pct }
};
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
lhs_syntax.next_sibling(),
rhs_syntax.next_sibling(),
v.lhs_parent_id,
v.rhs_parent_id,
&v.parents,
alloc,
);
neighbours.push((
edge,
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
}
}
if let Some(lhs_syntax) = &v.lhs_syntax {
match lhs_syntax {
// Step over this novel atom.
Syntax::Atom { .. } => {
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
lhs_syntax.next_sibling(),
v.rhs_syntax,
v.lhs_parent_id,
v.rhs_parent_id,
&v.parents,
alloc,
);
neighbours.push((
NovelAtomLHS {},
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
// Step into this partially/fully novel list.
Syntax::List { children, .. } => {
let lhs_next = children.first().copied();
let parents_next = push_lhs_delimiter(&v.parents, lhs_syntax, alloc);
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
lhs_next,
v.rhs_syntax,
Some(lhs_syntax.id()),
v.rhs_parent_id,
&parents_next,
alloc,
);
neighbours.push((
EnterNovelDelimiterLHS {},
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
}
}
if let Some(rhs_syntax) = &v.rhs_syntax {
match rhs_syntax {
// Step over this novel atom.
Syntax::Atom { .. } => {
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
v.lhs_syntax,
rhs_syntax.next_sibling(),
v.lhs_parent_id,
v.rhs_parent_id,
&v.parents,
alloc,
);
neighbours.push((
NovelAtomRHS {},
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
// Step into this partially/fully novel list.
Syntax::List { children, .. } => {
let rhs_next = children.first().copied();
let parents_next = push_rhs_delimiter(&v.parents, rhs_syntax, alloc);
let (lhs_syntax, rhs_syntax, lhs_parent_id, rhs_parent_id, parents) =
pop_all_parents(
v.lhs_syntax,
rhs_next,
v.lhs_parent_id,
Some(rhs_syntax.id()),
&parents_next,
alloc,
);
neighbours.push((
EnterNovelDelimiterRHS {},
allocate_if_new(
Vertex {
neighbours: RefCell::new(None),
predecessor: Cell::new(None),
lhs_syntax,
rhs_syntax,
parents,
lhs_parent_id,
rhs_parent_id,
},
alloc,
seen,
),
));
}
}
}
assert!(
!neighbours.is_empty(),
"Must always find some next steps if node is not the end"
);
v.neighbours
.replace(Some(alloc.alloc_slice_copy(neighbours.as_slice())));
}
pub(crate) fn populate_change_map<'s, 'v>(
route: &[(Edge, &'v Vertex<'s, 'v>)],
change_map: &mut ChangeMap<'s>,
) {
for (e, v) in route {
match e {
UnchangedNode { .. } => {
// No change on this node or its children.
let lhs = v.lhs_syntax.unwrap();
let rhs = v.rhs_syntax.unwrap();
insert_deep_unchanged(lhs, rhs, change_map);
insert_deep_unchanged(rhs, lhs, change_map);
}
EnterUnchangedDelimiter { .. } => {
// No change on the outer delimiter, but children may
// have changed.
let lhs = v.lhs_syntax.unwrap();
let rhs = v.rhs_syntax.unwrap();
change_map.insert(lhs, ChangeKind::Unchanged(rhs));
change_map.insert(rhs, ChangeKind::Unchanged(lhs));
}
ReplacedComment { levenshtein_pct } | ReplacedString { levenshtein_pct } => {
let lhs = v.lhs_syntax.unwrap();
let rhs = v.rhs_syntax.unwrap();
let change_kind = |first, second| {
if let ReplacedComment { .. } = e {
ChangeKind::ReplacedComment(first, second)
} else {
ChangeKind::ReplacedString(first, second)
}
};
if *levenshtein_pct > 20 {
change_map.insert(lhs, change_kind(lhs, rhs));
change_map.insert(rhs, change_kind(rhs, lhs));
} else {
change_map.insert(lhs, ChangeKind::Novel);
change_map.insert(rhs, ChangeKind::Novel);
}
}
NovelAtomLHS { .. } | EnterNovelDelimiterLHS { .. } => {
let lhs = v.lhs_syntax.unwrap();
change_map.insert(lhs, ChangeKind::Novel);
}
NovelAtomRHS { .. } | EnterNovelDelimiterRHS { .. } => {
let rhs = v.rhs_syntax.unwrap();
change_map.insert(rhs, ChangeKind::Novel);
}
}
}
}