difftastic/src/syntax.rs

1153 lines
35 KiB
Rust

//! Syntax tree definitions with change metadata.
#![allow(clippy::mutable_key_type)] // Hash for Syntax doesn't use mutable fields.
use itertools::{EitherOrBoth, Itertools};
use lazy_static::lazy_static;
use regex::Regex;
use std::cell::Cell;
use std::cmp::{max, min};
use std::collections::hash_map::DefaultHasher;
use std::collections::HashMap;
use std::fmt;
use std::hash::{Hash, Hasher};
use typed_arena::Arena;
use crate::lines::{LineGroup, LineNumber, NewlinePositions};
use crate::positions::SingleLineSpan;
use ChangeKind::*;
use Syntax::*;
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum ChangeKind<'a> {
Unchanged(&'a Syntax<'a>),
ReplacedComment(&'a Syntax<'a>, &'a Syntax<'a>),
Novel,
}
/// A Debug implementation that ignores the corresponding node
/// mentioned for Unchanged. Otherwise we will infinitely loop on
/// unchanged nodes, which both point to the other.
impl<'a> fmt::Debug for ChangeKind<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let desc = match self {
Unchanged(_) => "Unchanged",
ReplacedComment(_, _) => "ReplacedComment",
Novel => "Novel",
};
f.write_str(desc)
}
}
/// Fields that are common to both `Syntax::List` and `Syntax::Atom`.
pub struct SyntaxInfo<'a> {
// TODO: Make these fields private.
pub pos_content_hash: u64,
pub next: Cell<Option<&'a Syntax<'a>>>,
pub prev: Cell<Option<&'a Syntax<'a>>>,
pub change: Cell<Option<ChangeKind<'a>>>,
pub num_ancestors: Cell<u64>,
pub unique_id: Cell<u64>,
}
impl<'a> SyntaxInfo<'a> {
pub fn new(pos_content_hash: u64) -> Self {
Self {
pos_content_hash,
next: Cell::new(None),
prev: Cell::new(None),
change: Cell::new(None),
num_ancestors: Cell::new(0),
unique_id: Cell::new(0),
}
}
}
pub enum Syntax<'a> {
List {
info: SyntaxInfo<'a>,
open_position: Vec<SingleLineSpan>,
open_content: String,
children: Vec<&'a Syntax<'a>>,
close_position: Vec<SingleLineSpan>,
close_content: String,
num_descendants: u64,
},
Atom {
info: SyntaxInfo<'a>,
position: Vec<SingleLineSpan>,
content: String,
is_comment: bool,
},
}
fn dbg_pos(pos: &[SingleLineSpan]) -> String {
match pos {
[] => "-".into(),
[pos] => format!("{}:{}-{}", pos.line.0, pos.start_col, pos.end_col),
[start, .., end] => format!(
"{}:{}-{}:{}",
start.line.0, start.start_col, end.line.0, end.end_col
),
}
}
impl<'a> fmt::Debug for Syntax<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
List {
open_content,
open_position,
children,
close_content,
close_position,
info,
..
} => {
let mut ds = f.debug_struct(&format!("List id:{}", self.id()));
ds.field("open_content", &open_content)
.field("open_position", &dbg_pos(open_position))
.field("children", &children)
.field("close_content", &close_content)
.field("close_position", &dbg_pos(close_position))
.field("change", &info.change.get());
let next_s = match info.next.get() {
Some(List { .. }) => "Some(List)",
Some(Atom { .. }) => "Some(Atom)",
None => "None",
};
ds.field("next", &next_s);
ds.finish()
}
Atom {
content,
position,
info,
..
} => {
let mut ds = f.debug_struct(&format!("Atom id:{}", self.id()));
ds.field("content", &content)
.field("change", &info.change.get());
ds.field("position", &dbg_pos(position));
let next_s = match info.next.get() {
Some(List { .. }) => "Some(List)",
Some(Atom { .. }) => "Some(Atom)",
None => "None",
};
ds.field("next", &next_s);
ds.finish()
}
}
}
}
fn trim_left(max_trim: usize, content: &str, pos: SingleLineSpan) -> (String, SingleLineSpan) {
let chars: Vec<_> = content.chars().collect();
match chars.iter().position(|c| *c != ' ' && *c != '\t') {
Some(first_non_whitespace) => {
let skip_num = max(max_trim, first_non_whitespace);
let mut new_pos = pos;
new_pos.start_col += skip_num;
(chars.iter().skip(skip_num).collect(), new_pos)
}
None => (content.to_string(), pos),
}
}
impl<'a> Syntax<'a> {
#[allow(clippy::mut_from_ref)] // Clippy doesn't understand arenas.
pub fn new_list(
arena: &'a Arena<Syntax<'a>>,
open_content: &str,
open_position: Vec<SingleLineSpan>,
children: Vec<&'a Syntax<'a>>,
close_content: &str,
close_position: Vec<SingleLineSpan>,
) -> &'a mut Syntax<'a> {
let mut num_descendants = 0;
for child in &children {
num_descendants += match child {
List {
num_descendants, ..
} => *num_descendants + 1,
Atom { .. } => 1,
};
}
let mut hasher = DefaultHasher::new();
open_position.hash(&mut hasher);
open_content.hash(&mut hasher);
close_content.hash(&mut hasher);
close_position.hash(&mut hasher);
for child in &children {
child.hash(&mut hasher);
}
arena.alloc(List {
info: SyntaxInfo::new(hasher.finish()),
open_position,
open_content: open_content.into(),
close_content: close_content.into(),
close_position,
children,
num_descendants,
})
}
#[allow(clippy::mut_from_ref)] // Clippy doesn't understand arenas.
pub fn new_atom(
arena: &'a Arena<Syntax<'a>>,
position: Vec<SingleLineSpan>,
content: &str,
) -> &'a mut Syntax<'a> {
Self::new_atom_(arena, position, content, false)
}
#[allow(clippy::mut_from_ref)] // Clippy doesn't understand arenas.
pub fn new_comment(
arena: &'a Arena<Syntax<'a>>,
position: Vec<SingleLineSpan>,
content: &str,
) -> &'a mut Syntax<'a> {
// Ignore leading whitespace in multiline comments, so changes
// in comment indentation are ignored.
let first_line_indent = match position.first() {
Some(line_pos) => line_pos.start_col,
None => 0,
};
let mut new_lines: Vec<String> = vec![];
let mut new_position = vec![];
for (i, (line, span)) in content.lines().zip(position).enumerate() {
if i == 0 {
new_lines.push(line.to_string());
new_position.push(span);
} else {
let (new_line, new_span) = trim_left(first_line_indent, line, span);
new_lines.push(new_line);
new_position.push(new_span);
}
}
Self::new_atom_(arena, new_position, &new_lines.join("\n"), true)
}
#[allow(clippy::mut_from_ref)] // Clippy doesn't understand arenas.
fn new_atom_(
arena: &'a Arena<Syntax<'a>>,
position: Vec<SingleLineSpan>,
content: &str,
is_comment: bool,
) -> &'a mut Syntax<'a> {
let mut hasher = DefaultHasher::new();
position.hash(&mut hasher);
content.hash(&mut hasher);
arena.alloc(Atom {
info: SyntaxInfo::new(hasher.finish()),
position,
content: content.into(),
is_comment,
})
}
pub fn info(&self) -> &SyntaxInfo<'a> {
match self {
List { info, .. } => info,
Atom { info, .. } => info,
}
}
pub fn next(&self) -> Option<&'a Syntax<'a>> {
self.info().next.get()
}
pub fn prev_is_contiguous(&self) -> bool {
if let Some(prev) = self.info().prev.get() {
match prev {
List {
open_position,
close_position,
..
} => {
let prev_is_parent = prev.num_ancestors() < self.num_ancestors();
if prev_is_parent {
open_position.last().map(|p| p.line) == self.first_line()
} else {
// predecessor node at the same level.
close_position.last().map(|p| p.line) == self.first_line()
}
}
Atom { .. } => prev.last_line() == self.first_line(),
}
} else {
false
}
}
pub fn id(&self) -> u64 {
self.info().unique_id.get()
}
pub fn num_ancestors(&self) -> u64 {
self.info().num_ancestors.get()
}
pub fn first_line(&self) -> Option<LineNumber> {
let position = match self {
List { open_position, .. } => open_position,
Atom { position, .. } => position,
};
position.first().map(|lp| lp.line)
}
pub fn last_line(&self) -> Option<LineNumber> {
let position = match self {
List { close_position, .. } => close_position,
Atom { position, .. } => position,
};
position.last().map(|lp| lp.line)
}
pub fn set_change(&self, ck: ChangeKind<'a>) {
self.info().change.set(Some(ck));
}
pub fn set_change_deep(&self, ck: ChangeKind<'a>) {
self.set_change(ck);
if let List { children, .. } = self {
// For unchanged lists, match up children with the
// unchanged children on the other side.
if let Unchanged(List {
children: other_children,
..
}) = ck
{
for (child, other_child) in children.iter().zip(other_children) {
child.set_change_deep(Unchanged(other_child));
}
} else {
for child in children {
child.set_change_deep(ck);
}
};
}
}
pub fn equal_content(&self, other: &Self) -> bool {
match (&self, other) {
(
Atom {
content: lhs_content,
is_comment: lhs_is_comment,
..
},
Atom {
content: rhs_content,
is_comment: rhs_is_comment,
..
},
) => lhs_content == rhs_content && lhs_is_comment == rhs_is_comment,
(
List {
open_content: lhs_open_content,
close_content: lhs_close_content,
children: lhs_children,
..
},
List {
open_content: rhs_open_content,
close_content: rhs_close_content,
children: rhs_children,
..
},
) => {
if lhs_open_content != rhs_open_content || lhs_close_content != rhs_close_content {
return false;
}
if lhs_children.len() != rhs_children.len() {
return false;
}
for (lhs_child, rhs_child) in lhs_children.iter().zip(rhs_children.iter()) {
if !lhs_child.equal_content(rhs_child) {
return false;
}
}
true
}
_ => false,
}
}
/// Does this `Node` have the same position in all its subnodes?
///
/// Nodes with different numbers of children return false
/// regardless of top-level positions.
fn equal_pos(&self, other: &Self) -> bool {
match (&self, other) {
(
Atom {
position: lhs_position,
..
},
Atom {
position: rhs_position,
..
},
) => lhs_position == rhs_position,
(
List {
open_position: lhs_open_position,
close_position: lhs_close_position,
children: lhs_children,
..
},
List {
open_position: rhs_open_position,
close_position: rhs_close_position,
children: rhs_children,
..
},
) => {
if lhs_open_position != rhs_open_position
|| lhs_close_position != rhs_close_position
{
return false;
}
if lhs_children.len() != rhs_children.len() {
return false;
}
for (lhs_child, rhs_child) in lhs_children.iter().zip(rhs_children.iter()) {
if !lhs_child.equal_pos(rhs_child) {
return false;
}
}
true
}
_ => false,
}
}
}
pub fn init_info<'a>(roots: &[&'a Syntax<'a>]) {
set_unique_id(roots, 0);
set_next(roots, None);
set_prev(roots, None);
set_num_ancestors(roots, 0);
}
fn set_unique_id<'a>(nodes: &[&'a Syntax<'a>], prev_id: u64) -> u64 {
let mut id = prev_id + 1;
for node in nodes {
node.info().unique_id.set(id);
if let List { children, .. } = node {
id = set_unique_id(children, id);
}
id += 1;
}
id
}
/// For every syntax node in the tree, mark the next node according to
/// a preorder traversal.
fn set_next<'a>(nodes: &[&'a Syntax<'a>], parent_next: Option<&'a Syntax<'a>>) {
for (i, node) in nodes.iter().enumerate() {
let node_next = match nodes.get(i + 1) {
Some(node_next) => Some(*node_next),
None => parent_next,
};
node.info().next.set(node_next);
if let List { children, .. } = node {
set_next(children, node_next);
}
}
}
/// For every syntax node in the tree, mark the previous node
/// according to a preorder traversal.
fn set_prev<'a>(nodes: &[&'a Syntax<'a>], parent: Option<&'a Syntax<'a>>) {
for (i, node) in nodes.iter().enumerate() {
let node_prev = if i == 0 { parent } else { Some(nodes[i - 1]) };
node.info().prev.set(node_prev);
if let List { children, .. } = node {
set_prev(children, Some(node));
}
}
}
fn set_num_ancestors<'a>(nodes: &[&Syntax<'a>], num_ancestors: u64) {
for node in nodes {
node.info().num_ancestors.set(num_ancestors);
if let List { children, .. } = node {
set_num_ancestors(children, num_ancestors + 1);
}
}
}
impl<'a> PartialEq for Syntax<'a> {
fn eq(&self, other: &Self) -> bool {
self.equal_pos(other) && self.equal_content(other)
}
}
impl<'a> Eq for Syntax<'a> {}
impl<'a> Hash for Syntax<'a> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.info().pos_content_hash.hash(state);
}
}
#[derive(PartialEq, Eq, Debug, Clone)]
pub enum MatchKind {
Unchanged { opposite_pos: Vec<SingleLineSpan> },
Novel,
UnchangedCommentPart { opposite_pos: Vec<SingleLineSpan> },
ChangedCommentPart,
}
impl MatchKind {
pub fn is_unchanged(&self) -> bool {
match self {
MatchKind::Unchanged { .. } => true,
_ => false,
}
}
}
#[derive(Debug, Clone)]
pub struct MatchedPos {
pub kind: MatchKind,
pub pos: Vec<SingleLineSpan>,
// TODO: this is confusing: the previous syntax node with a match
// may be on the current line or a previous one.
pub prev_opposite_pos: Vec<SingleLineSpan>,
}
fn split_comment_words(
content: &str,
pos: &[SingleLineSpan],
opposite_content: &str,
opposite_pos: &[SingleLineSpan],
prev_opposite_pos: &[SingleLineSpan],
) -> Vec<MatchedPos> {
// TODO: also split on whitespace, so "// (foo)" splits before "(".
// TODO: merge adjacent single-line comments unless there are
// blank lines between them.
lazy_static! {
static ref WORD_BOUNDARY_RE: Regex = Regex::new(r"\b").unwrap();
}
let content_parts: Vec<_> = WORD_BOUNDARY_RE.split(content).collect();
let other_parts: Vec<_> = WORD_BOUNDARY_RE.split(opposite_content).collect();
let content_newlines = NewlinePositions::from(content);
let opposite_content_newlines = NewlinePositions::from(opposite_content);
let mut offset = 0;
let mut opposite_offset = 0;
let mut res = vec![];
for diff_res in diff::slice(&content_parts, &other_parts) {
match diff_res {
diff::Result::Left(word) => {
// This word is novel to this side.
res.push(MatchedPos {
kind: MatchKind::ChangedCommentPart,
pos: content_newlines.from_offsets_relative_to(
pos[0],
offset,
offset + word.len(),
),
prev_opposite_pos: prev_opposite_pos.to_vec(),
});
offset += word.len();
}
diff::Result::Both(word, opposite_word) => {
// This word is present on both sides.
let word_pos =
content_newlines.from_offsets_relative_to(pos[0], offset, offset + word.len());
let opposite_word_pos = opposite_content_newlines.from_offsets_relative_to(
opposite_pos[0],
opposite_offset,
opposite_offset + opposite_word.len(),
);
res.push(MatchedPos {
kind: MatchKind::UnchangedCommentPart {
opposite_pos: opposite_word_pos,
},
pos: word_pos,
prev_opposite_pos: prev_opposite_pos.to_vec(),
});
offset += word.len();
opposite_offset += opposite_word.len();
}
diff::Result::Right(opposite_word) => {
// Only exists on other side, nothing to do on this side.
opposite_offset += opposite_word.len();
}
}
}
res
}
impl MatchedPos {
fn new(
ck: ChangeKind,
pos: Vec<SingleLineSpan>,
prev_opposite_pos: Vec<SingleLineSpan>,
) -> Vec<Self> {
let kind = match ck {
ReplacedComment(this, opposite) => {
let this_content = match this {
List { .. } => unreachable!(),
Atom { content, .. } => content,
};
let (opposite_content, opposite_pos) = match opposite {
List { .. } => unreachable!(),
Atom {
content, position, ..
} => (content, position),
};
return split_comment_words(
this_content,
&pos,
opposite_content,
opposite_pos,
&prev_opposite_pos,
);
}
Unchanged(opposite) => {
// TODO: is close_position the best position for
// unchanged lists?
let opposite_pos = match opposite {
List { close_position, .. } => close_position.clone(),
Atom { position, .. } => position.clone(),
};
MatchKind::Unchanged { opposite_pos }
}
Novel => MatchKind::Novel,
};
vec![Self {
kind,
pos,
prev_opposite_pos,
}]
}
}
/// Walk `nodes` and return a vec of all the changed positions.
pub fn change_positions<'a>(
src: &str,
opposite_src: &str,
nodes: &[&Syntax<'a>],
) -> Vec<MatchedPos> {
let nl_pos = NewlinePositions::from(src);
let opposite_nl_pos = NewlinePositions::from(opposite_src);
let mut positions = Vec::new();
let mut prev_unchanged = vec![SingleLineSpan {
line: 0.into(),
start_col: 0,
end_col: 0,
}];
change_positions_(
&nl_pos,
&opposite_nl_pos,
nodes,
&mut prev_unchanged,
&mut positions,
);
positions
}
fn change_positions_<'a>(
nl_pos: &NewlinePositions,
opposite_nl_pos: &NewlinePositions,
nodes: &[&Syntax<'a>],
prev_opposite_pos: &mut Vec<SingleLineSpan>,
positions: &mut Vec<MatchedPos>,
) {
for node in nodes {
match node {
List {
info,
open_position,
children,
close_position,
..
} => {
let change = info
.change
.get()
.unwrap_or_else(|| panic!("Should have changes set in all nodes: {:#?}", node));
if let Unchanged(opposite_node) = change {
match opposite_node {
List {
open_position: opposite_open_pos,
..
} => {
*prev_opposite_pos = opposite_open_pos.clone();
}
Atom { .. } => unreachable!(),
}
}
positions.extend(MatchedPos::new(
change,
open_position.clone(),
prev_opposite_pos.clone(),
));
change_positions_(
nl_pos,
opposite_nl_pos,
children,
prev_opposite_pos,
positions,
);
if let Unchanged(opposite_node) = change {
match opposite_node {
List {
close_position: opposite_close_pos,
..
} => {
*prev_opposite_pos = opposite_close_pos.clone();
}
Atom { .. } => unreachable!(),
}
}
positions.extend(MatchedPos::new(
change,
close_position.clone(),
prev_opposite_pos.clone(),
));
}
Atom { info, position, .. } => {
let change = info
.change
.get()
.unwrap_or_else(|| panic!("Should have changes set in all nodes: {:#?}", node));
if let Unchanged(opposite_node) = change {
match opposite_node {
List { .. } => {
dbg!(node, opposite_node);
unreachable!();
}
Atom {
position: opposite_position,
..
} => {
*prev_opposite_pos = opposite_position.clone();
}
}
}
positions.extend(MatchedPos::new(
change,
position.clone(),
prev_opposite_pos.clone(),
));
}
}
}
}
fn zip_pad_shorter<Tx: Copy, Ty: Copy>(lhs: &[Tx], rhs: &[Ty]) -> Vec<(Option<Tx>, Option<Ty>)> {
let mut res = vec![];
let mut i = 0;
loop {
match (lhs.get(i), rhs.get(i)) {
(None, None) => break,
(x, y) => res.push((x.copied(), y.copied())),
}
i += 1;
}
res
}
/// Given two slices of line positions, return a list of line number
/// pairs. If the slices have different lengths, reuse the last item
/// from the shorter slice.
fn zip_lines(lhs: &[SingleLineSpan], rhs: &[SingleLineSpan]) -> Vec<(LineNumber, LineNumber)> {
let lhs_lines: Vec<_> = lhs.iter().map(|slp| slp.line).collect();
let rhs_lines: Vec<_> = rhs.iter().map(|slp| slp.line).collect();
let lhs_last = match lhs_lines.last() {
Some(last) => *last,
None => {
return vec![];
}
};
let rhs_last = match rhs_lines.last() {
Some(last) => *last,
None => {
return vec![];
}
};
lhs_lines
.into_iter()
.zip_longest(rhs_lines.into_iter())
.map(|l| match l {
EitherOrBoth::Both(lhs_line, rhs_line) => (lhs_line, rhs_line),
EitherOrBoth::Left(lhs_line) => (lhs_line, rhs_last),
EitherOrBoth::Right(rhs_line) => (lhs_last, rhs_line),
})
.collect()
}
pub fn aligned_lines(
group: &LineGroup,
lhs_line_matches: &HashMap<LineNumber, LineNumber>,
) -> Vec<(Option<LineNumber>, Option<LineNumber>)> {
let lhs_lines = group.lhs_lines();
let rhs_lines = group.rhs_lines();
// When adding padding to a LineGroup where each side has a
// different number of lines, we can end up with extra padding on
// the side with fewer lines.
//
// TODO: fix padding to be smarter.
aligned_lines_(&lhs_lines, &rhs_lines, lhs_line_matches)
}
/// Given two slices of contiguous line numbers, return pairs of
/// matched lines.
///
/// A LHS line is matched with a RHS line if it's present in
/// `lhs_line_matches` and hasn't already been matched.
///
/// If a line has no match on the other side, the pair will contain
/// None on the other side.
fn aligned_lines_(
lhs_lines: &[LineNumber],
rhs_lines: &[LineNumber],
lhs_line_matches: &HashMap<LineNumber, LineNumber>,
) -> Vec<(Option<LineNumber>, Option<LineNumber>)> {
let mut rhs_highest_matched = rhs_lines.first().map_or(0, |l| l.0 as isize) - 1;
// For every LHS line, if there is a RHS line that is included in
// `rhs_lines` and hasn't yet been paired up, add it to
// matched_lines.
//
// TODO: prefer the line with the most similarity, not just the
// first line. See spurious `let` alignment in 9c71298f8294ce8f,
// LHS line 96 in lines.rs.
let mut matched_lines = vec![];
for lhs_line in lhs_lines {
if let Some(rhs_line) = lhs_line_matches.get(lhs_line) {
if rhs_line.0 as isize > rhs_highest_matched {
matched_lines.push((lhs_line, rhs_line));
rhs_highest_matched = rhs_line.0 as isize;
}
}
}
let mut res = vec![];
let mut lhs_i = 0;
let mut rhs_i = 0;
// Build a vec of matched line tuples. For lines without matches
// (novel lines, empty lines), just match lines up pairwise. Pad
// gaps if one side has more lines.
for (lhs_matched_line, rhs_matched_line) in matched_lines {
let mut lhs_prev_lines = vec![];
while lhs_i < lhs_lines.len() && lhs_lines[lhs_i] < *lhs_matched_line {
lhs_prev_lines.push(lhs_lines[lhs_i]);
lhs_i += 1;
}
let mut rhs_prev_lines = vec![];
while rhs_i < rhs_lines.len() && rhs_lines[rhs_i] < *rhs_matched_line {
rhs_prev_lines.push(rhs_lines[rhs_i]);
rhs_i += 1;
}
res.extend(zip_pad_shorter(&lhs_prev_lines, &rhs_prev_lines));
res.push((Some(*lhs_matched_line), Some(*rhs_matched_line)));
lhs_i += 1;
rhs_i += 1;
}
// Handle unmatched lines after the last match.
res.extend(zip_pad_shorter(
&lhs_lines[min(lhs_i, lhs_lines.len())..],
&rhs_lines[min(rhs_i, rhs_lines.len())..],
));
res
}
pub fn matching_lines<'a>(nodes: &[&Syntax<'a>]) -> HashMap<LineNumber, LineNumber> {
let mut res = HashMap::new();
for node in nodes {
matching_lines_(node, &mut res);
}
res
}
fn matching_lines_<'a>(node: &Syntax<'a>, matches: &mut HashMap<LineNumber, LineNumber>) {
match node {
List {
info,
open_position,
children,
close_position,
..
} => {
if let Some(Unchanged(List {
open_position: other_open,
close_position: other_close,
..
})) = info.change.get()
{
for (line, other_line) in zip_lines(open_position, other_open) {
matches.entry(line).or_insert(other_line);
}
for (line, other_line) in zip_lines(close_position, other_close) {
matches.entry(line).or_insert(other_line);
}
}
for child in children {
matching_lines_(child, matches);
}
}
Atom { info, position, .. } => {
if let Some(Unchanged(Atom {
position: other_pos,
..
})) = info.change.get()
{
for (line, other_line) in zip_lines(position, other_pos) {
matches.entry(line).or_insert(other_line);
}
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use pretty_assertions::assert_eq;
#[test]
fn test_aligned_middle() {
let lhs_lines: Vec<LineNumber> = vec![1.into(), 2.into()];
let rhs_lines: Vec<LineNumber> = vec![12.into(), 13.into()];
let mut line_matches: HashMap<LineNumber, LineNumber> = HashMap::new();
line_matches.insert(2.into(), 12.into());
assert_eq!(
aligned_lines_(&lhs_lines, &rhs_lines, &line_matches),
vec![
(Some(1.into()), None),
(Some(2.into()), Some(12.into())),
(None, Some(13.into()))
]
);
}
#[test]
fn test_aligned_all() {
let lhs_lines: Vec<LineNumber> = vec![1.into(), 2.into()];
let rhs_lines: Vec<LineNumber> = vec![11.into(), 12.into()];
let mut line_matches: HashMap<LineNumber, LineNumber> = HashMap::new();
line_matches.insert(1.into(), 2.into());
line_matches.insert(2.into(), 12.into());
assert_eq!(
aligned_lines_(&lhs_lines, &rhs_lines, &line_matches),
vec![
(Some(1.into()), Some(11.into())),
(Some(2.into()), Some(12.into())),
]
);
}
#[test]
fn test_aligned_none() {
let lhs_lines: Vec<LineNumber> = vec![1.into()];
let rhs_lines: Vec<LineNumber> = vec![11.into()];
let line_matches: HashMap<LineNumber, LineNumber> = HashMap::new();
assert_eq!(
aligned_lines_(&lhs_lines, &rhs_lines, &line_matches),
vec![(Some(1.into()), Some(11.into()))]
);
}
#[test]
fn test_aligned_line_overlap() {
let lhs_lines: Vec<LineNumber> = vec![1.into(), 2.into()];
let rhs_lines: Vec<LineNumber> = vec![11.into()];
let mut line_matches: HashMap<LineNumber, LineNumber> = HashMap::new();
line_matches.insert(1.into(), 11.into());
line_matches.insert(2.into(), 11.into());
assert_eq!(
aligned_lines_(&lhs_lines, &rhs_lines, &line_matches),
vec![(Some(1.into()), Some(11.into())), (Some(2.into()), None)]
);
}
#[test]
fn test_aligned_out_of_order() {
let lhs_lines: Vec<LineNumber> = vec![1.into(), 2.into()];
let rhs_lines: Vec<LineNumber> = vec![11.into(), 12.into()];
let mut line_matches: HashMap<LineNumber, LineNumber> = HashMap::new();
line_matches.insert(2.into(), 11.into());
line_matches.insert(1.into(), 12.into());
assert_eq!(
aligned_lines_(&lhs_lines, &rhs_lines, &line_matches),
vec![
(None, Some(11.into())),
(Some(1.into()), Some(12.into())),
(Some(2.into()), None)
]
);
}
#[test]
fn test_aligned_out_of_range() {
let lhs_lines: Vec<LineNumber> = vec![1.into(), 2.into()];
let rhs_lines: Vec<LineNumber> = vec![11.into(), 12.into()];
let mut line_matches: HashMap<LineNumber, LineNumber> = HashMap::new();
line_matches.insert(1.into(), 10.into());
assert_eq!(
aligned_lines_(&lhs_lines, &rhs_lines, &line_matches),
vec![
(Some(1.into()), Some(11.into())),
(Some(2.into()), Some(12.into())),
]
);
}
#[test]
fn test_aligned_first_line() {
let lhs_lines: Vec<LineNumber> = vec![0.into()];
let rhs_lines: Vec<LineNumber> = vec![0.into()];
let mut line_matches: HashMap<LineNumber, LineNumber> = HashMap::new();
line_matches.insert(0.into(), 0.into());
assert_eq!(
aligned_lines_(&lhs_lines, &rhs_lines, &line_matches),
vec![(Some(0.into()), Some(0.into()))]
);
}
/// Ensure that we assign prev_opposite_pos even if the change is on the first node.
#[test]
fn test_prev_opposite_pos_first_node() {
let arena = Arena::new();
let atom = Syntax::new_atom(
&arena,
vec![SingleLineSpan {
line: 0.into(),
start_col: 2,
end_col: 3,
}],
"foo",
);
atom.set_change(ChangeKind::Novel);
let nodes: Vec<&Syntax> = vec![atom];
let positions = change_positions("irrelevant", "also irrelevant", &nodes);
assert_eq!(
positions[0].prev_opposite_pos,
vec![SingleLineSpan {
line: 0.into(),
start_col: 0,
end_col: 0
}]
);
}
#[test]
fn test_comment_and_atom_differ() {
let pos = vec![SingleLineSpan {
line: 0.into(),
start_col: 2,
end_col: 3,
}];
let arena = Arena::new();
let comment = Syntax::new_comment(&arena, pos.clone(), "foo");
let atom = Syntax::new_atom(&arena, pos, "foo");
assert_ne!(comment, atom);
}
#[test]
fn test_atom_equality_ignores_change() {
assert_eq!(
Atom {
info: SyntaxInfo {
change: Cell::new(Some(Novel)),
..SyntaxInfo::new(1)
},
position: vec![SingleLineSpan {
line: 1.into(),
start_col: 2,
end_col: 3
}],
content: "foo".into(),
is_comment: false,
},
Atom {
info: SyntaxInfo {
change: Cell::new(None),
..SyntaxInfo::new(1)
},
position: vec![SingleLineSpan {
line: 1.into(),
start_col: 2,
end_col: 3
}],
content: "foo".into(),
is_comment: false,
}
);
}
}