|
|
|
|
@ -93,10 +93,18 @@ fn split_string_by_width(s: &str, max_width: usize, tab_width: usize) -> Vec<(&s
|
|
|
|
|
let mut s = s;
|
|
|
|
|
|
|
|
|
|
// Optimisation: width_respecting_tabs() walks the whole string,
|
|
|
|
|
// which is slow when we have files with massive lines. `s.len()`
|
|
|
|
|
// is always lower than width_respecting_tabs(s), so check that
|
|
|
|
|
// first.
|
|
|
|
|
while s.len() > max_width || width_respecting_tabs(s, tab_width) > max_width {
|
|
|
|
|
// which is slow when we have files with massive lines.
|
|
|
|
|
//
|
|
|
|
|
// A single character (grapheme) in UTF-8 can be 1, 2, 3 or 4
|
|
|
|
|
// bytes. A character's display width can be 0 (control
|
|
|
|
|
// characters), 1 (the typical case), 2 (e.g. fullwidth characters
|
|
|
|
|
// in Chinese, Japanese and Korean) or 4 (the default width for
|
|
|
|
|
// tabs in difftastic).
|
|
|
|
|
//
|
|
|
|
|
// Ignoring control characters, this means an n-byte UTF-8 string
|
|
|
|
|
// has a display width of at least n/4 characters. Check that case
|
|
|
|
|
// first, because it's a cheap conservative calculation.
|
|
|
|
|
while s.len() / 4 > max_width || width_respecting_tabs(s, tab_width) > max_width {
|
|
|
|
|
let offset = byte_offset_for_width(s, max_width, tab_width);
|
|
|
|
|
|
|
|
|
|
let part = substring_by_byte(s, 0, offset);
|
|
|
|
|
|